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Collapsing cylindrical metallic shells have been used to compress magnetic fluxes 
and generate megagauss magnetic fields. Such shells experience large, rapidly 
growing accelerations and their symmetry can be completely destroyed by 
Rayleigh-Taylor instabilities. This paper presents a theoretical study of the 
Rayleigh-Taylor instability for radially accelerated incompressible cylindrical 
shells submitted to the pressure of much lighter media. Low-amplitude flute 
perturbations are considered and Fourier-analyzed in the azimuthal angle. 
A fourth-order linear differential system with time-dependent coefficients is 
derived, which determines the two interface-displacements. Stability criteria are 
discussed. When the perturbation wavelength is much greater or much smaller 
than the shell thickness, the differential system splits into two independent 
differential equations and results are greatly simplified; analytical solutions are 
available for some cases. 

The case of axial field compression (A.F.c.) is discussed as an application. 
Numerical solutions give the time behaviour of all possible initially given dis- 
turbances. The initial perturbations, which are able to reach the axis during their 
development and which are consequently dangerous in magnetic field compres- 
sion experiments, have been calculated'. Results are consistent with the few 
experimental data available. They show that the degree of symmetry of cylindri- 
cal devices has to be extremely good in order to get successful compressions. 

Finally, non-linear and compressibility effects have been taken into account 
for some A.F.C. cases, solving the full non-linear fluid equations numerically. 

1. Introduction 
As reported in the proceedings of two conferences on high magnetic field 

generation and in many other publications,? magnetic fields of the order of several 
megagauss have been obtained experimentally by means of explosive-driven 
cylindrical implosions. In such devices, an axial magnetic field is initially 
generated within a thin hollow metallic cylinder called the 'liner'. A ring of 
high explosives placed around the liner is detonated on the periphery. Conse- 
quently the liner is radially imploded and reaches high velocities during the very 

t Proceedings of a Conference on Megagauss Magnetic Field Generation by Explosives 
and Related Ezperiments, Frascati 1965. (EURATOM 2750e : Brussels, 1966) ; Colloque 
international sur les champs magndtiques intenses, leur production et leurs applications, 
Grenoble 1966 (C.N.R.S. : Paris). A detailed bibliography on the subject can be found in 
Somon (19683). 
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short expansion time of detonation products. The liner then compresses the 
magnetic field, which, if no diffusion process occurs (infinite electrical conductivity 
of the liner), behaves as a polytropic, adiabatic gas with y = 2 and negligible 
mass. The growing magnetic pressure PI = B2/8n N rc4 exerted by the field on 
the inner liner-boundary stops the liner motion at a time t, (see figures I, 3). 
A maximum field B,is then reached for a minimum or turn-around radius of the 
inner liner boundary, say r1 = rm. An outwards decompressive motion follows 
the compression period. Assuming a perfect cylindrical symmetry of the system, 
Lehner, Linhart & Somon (1964) and Somon (1965, 19683) calculated the 
efficiency of this flux compression and derived some limitation to the maximum 
obtainable field due to the liner compressibility, and to the field diffusion within 
the liner. It was concluded that it would be extremely difficult to obtain fields 
greater than 20MG. 

As the implosion symmetry cannot initially be made perfect, it was soon felt, 
after the preliminary theoretical work of Linhart (1961) and Harris (1962), and 
after the first experimental results, that a motion-instability might destroy the 
liner before the maximum field could be reached and therefore provide another 
essential limitation to the process. The inner liner boundary is an interface be- 
tween an infinitely light medium (field) and a heavy one (liner). At the vicinity 
of the maximum compression the interface acceleration is directed towards the 
heavy medium and the well-known Rayleigh-Taylor instability will then build up 
on the interface. A proof of the importance of instabilities is given experimentally 
by the correlation between successful reproducible compressions and the ac- 
curacy of the explosive-device symmetry. Unfortunately data on the instability 
development are still very poor, since optical observation of the inner interface 
is available only as long as the liner inner radius is relatively large; it shows that 
the implosion symmetry remains quite good during the observation period, which 
is consistent with the small deceleration (roughly, P, N r i 3 ) .  At the vicinity of 
the turn-around radius, i.e. when the deceleration and the related instability 
suddenly become important, information is obtainable only from magnetic 
probe-signals. Nevertheless interpretation of these signals suggests some in- 
stability mechanism. In  most cases the magnetic signal is abruptIy interrupted 
before the field reaches a maximum value, even when the probe radius is smaller 
than the expected liner turn-around radius; this could be attributed to premature 
probe destruction due to an excessive development of a liner asymmetry. 
Di Gregorio, Herlach & Knoepfel (1966) also observed magnetic signals with 
a maximum field, and found some dispersion in the ‘turn-around behaviour’, 
which they attributed to instabilities. Until now magnetic fields up to values of 
about 6 MG have been reproducibly generated; higher fields, associated with 
higher liner accelerations, have only been produced in an erratic way. Clearly, 
the Rayleigh-Taylor instability of the liner motion is a main feature for magnetic 
flux compression experiments. The purpose of this paper is to study theoretically 
the Rayleigh-Taylor instability development and, especially, to determine the 
initial perturbations which lead to a complete destruction of the liner symmetry, 
i.e. to an interruption of the compression process. 

The Rayleigh-Taylor instability (Rayleigh 1900, Taylor 1950) of a two-fluid 



Dynamical instabilities of Cylindrical shells 771 

interface, submitted to a constant gravity or acceleration, has been studied 
extensively in plane geometry. Much of the early work is summarized by Chan- 
drasekhar (1961) and Wehausen & Laitone (1960). The simplest case of an in- 
compressible, ideal medium has been generalized by several authors, taking into 
account fluid stratification, viscosity, surface tension and magnetic field. Kruskal 
& Schwarzschild (1954) considered also a magnetic-plasma medium. Most 
studies assume low-amplitude perturbations which make it possible to use a 
linear analysis, but Birkhoff (1956) and Emmons, Chang & Watson (1960) 
developed some simplified non-linear theory. Harlow & Welch (1966) solved the 
Navier-Stokes equations of the problem numerically. 

In  other geometries the unperturbed motion enters in a more complicated way 
and the studies are fewer. Spherical bubbles in an infinite medium have been 
considered by Plesset (1954) and a moving cylindrical interface by Jarem & 
Watson (1962). The stability of an infinitely thin cylindrical shell has also been 
investigated, using a normal mode analysis applicable to the modes which 
grow faster than the characteristic motion time (Linhart 1961, Harris 1962). 

In  the experimental axial field compression case considered, the geometrical 
effect is important (small turn-around radius), the liner thickness vanes widely 
during the motion (approximate volume conservation) and the normal mode 
method cannot always be used with a rapidly growing acceleration. None of the 
preceding studies known covered this case and the analysis presented here 
proved to be necessary. 

With the exception of 9 7, the following main hypotheses will be used in the 
paper. (if The liner i s  an  ideal fluid. In  practice, the pressure tensor is isotropic 
(Al’tschuler 1965) at the megabar pressures created by compressed magnetic 
fields. Champetier et al. (1965) showed that viscosity and superficial tension are 
negligible for the considered perturbation wavelengths. (ii) The liner is in- 
compressible. (iii) Instabilities are of a flute type. These are the most dangerous 
instabilities, since they do not bend the magnetic lines of force (Harris 1962). 
(iv) Perturbations are of low amplitude (linear theory). Effects due to the liner 
compressibility and to the non-linearity are discussed and taken into account 
in 97. 

2. The unperturbed motion 

incompressible ideal fluid have the purely hydrodynamical form, 
In  the presence of an axial magnetic field B = B(r, t )  e,, the equations for an 

= 0,  
av+(v.v)v+-vP 1 = ~ (B .V)B 
at P 477P 

where P = p + B2/8.rr is the total pressure. For the considered radial motion of 
a cylindrical circular shell (figure 1) they reduce to 

r+ = a(t) ,  (2.3) 
49-2 
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r .. = 1aP(r,t) 
p ar ' 

with a a  (7 = ( ). 

(2.4) 

Integrating between the two boundaries, one gets 

(2.6) 

which determine the inner boundary motion, taking a(t) = rlf1. All other 
quantities are successively obtained. Useful ones, relative to the outer boundary, 
will be 

1 ,-Liner 

FIGURE 1. The unperturbed cyliiidrical motion. 

Accelerations are essential for Rayleigh-Taylor instability. Considering the 
time derivative of (2.3) it  is easy to find that, inside the liner, the acceleration r 
has either a constant sign or a single zero for which %(r,t)/ar > 0. It follows 
from ( 2 . 4 )  that at  any time (i) the pressure P is monotonic, or has at  most one 
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extremal inside the liner (this extremal is always a maximum); (ii) the accelera- 
tion vectors f, and f, on the boundaries cannot be directed simultaneously 
towards the liner. Hence three possible configurations, which depend 
on the interface acceleration signs, have been distinguished in figure 2. If 
an extrapolation of elementary plane stability criteria were allowed, these 
configurations should be directly related to the motion stability. A liner 
submitted to the pressures Pl of lighter media should be stable only for the 
configuration 2. This will be proved at  least for short wavelengths or quickly 
growing perturbations. 

FIGURE 2. The stability in connexion with motion configurations. Configurations 
depend on the reduced quantit.ies 6 = (PI - P2)/&pp.~ + 1 - ra and u = r2/rl. 

Axial field compressions 
The detonation products act as a pressure pulse, which accelerates the liner 
within a time short compared with the compression time. The liner motion will be 
considered only after this short acceleration period.? Consequently the explosive 
pressure P2(t) will be neglected and the relative boundary condition replaced by 
a given initial liner velocity + , ( O )  < 0. The axial magnetic field B exerts the 
pressure 

t Some special instabilities or jets created by the pressure pulse are thus ignored but 
have been studied by Champetier et al. (1965). 
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on the inner boundary, assuming that the liner is a perfect electrical conduetort 
(constant trapped magnetic flux 4 = nr? B).  

The A.F.C. motion has been studied by Somon (1965). The use of the reduced 
quantities 

is convenient. In practice the parameters D and N are such 
The motion equation (2.6) gives the energy conservation law 

(2.9) 

(2.10) 

that N <  D <  1. 

(2.11) 

Thus the magnetic field is compressed until a value B,, for which a minimum 
or ' turn-around ' radius rl = r,, with 

(2.12) 

is reached. The motion is then reversed, and starts to diverge. 

the boundary accelerations remain consequently small : 
During a long phase of the converging motion, velocities vary very slowly and 

?,(O) = Fk-0, F2(0) = r&+D < 1. 

Flm = umP2, = cut- l)/F,lOgu: B 1, 
A very high acceleration peak, 

follows which stops the liner within a short time lc N Tm and will greatly in- 
fluence the instability development (table 1 and figure 3). For thin enough liners 
(D < N4 or urn < 34) the configuration is of type 1 (see figure 2 )  during the whole 
motion. For thicker liners the configuration is initially 2 and becomes 1 close to 
the maximum compression. Initially thin liners will generally be thick at  the 
time f of maximum compression (typically vm = (1 + 2D2/N)4 N 1.5 to 6). 
Nevertheless it is interesting to consider the case of an infinitely thin liner for 

r3ji z p:, r 2  z F L +  ( E -  1)2.  (2.13) which 

In this rough approximation maximum accelerations are somewhat under- 
estimated but the trajectory is a simple hyperbola. 

3. The perturbed motion 

In obvious notation the perturbed velocity and pressure are 

B(r, t )  = v(r, t )  + SV, P(r, t )  = P(r, t )  + SP. 

3.1. The perturbed equations 

t To allow a diffusion of the magnetic field within the liner should not alter the following 
instability calculations, which are expressed in terms of the total pressure P, but only 
complicate the determination of the unperturbed motion r l ( t )  (see Somon 1965). 
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Case 

B 
0.1 
0.1 

- 7.94 ( - 2) 
7.78 ( -  2) 

0.82 
4.65 
5.91 (2) 
2.77 (1) 

- 1.2 (2) 
1.9 (2) 
1.3 (2) 

- 1.8 (2) 

C 
0.01 
0.1 

2.73 ( - 4) 
1.96 ( - 2) 

0.94 
1.73 

6.04 (1) 
1.81 (2) 

- 7.0 (2) 
8.9 (2) 
7.1 (2) 

- 8.7 (2) 

D 
0.04 
0.25 

2.84 ( -  2) 
9.60 ( -  2) 

0.88 
1.51 
2-56 (1) 
1.11 (1) 

- 2.6 (1) 
6.7 (1) 
3.2 (1) 

- 6.2 (1) 

E 
0.04 
0.05 

-3.57 (-2) 
3.67 ( -  2) 

0.86 
5.63 
2.87 (3) 
9.68 (1) 

-5.7 (2) 
7.2 (2) 
5*8.(2) 

-7.1 (2) 

TABLE 1. The values of some parameters relative to unperturbed motions 
and to the stability of four harmonic 2 modes. (n) means x lon 

0.3 \ 

tm tm 

FIGURE 3. Motion law and accelerations for A.F.C. 
Case A :  rm = 0.1, D = 4 x  lo-%. 

A perturbed velocity potential Sq5(r, t )  is defined, assuming curl-free initial per- 
turbations. It follows that Sv = OS$ with 

V2S$ = 0, (3.1) 

from incompressibility equation (2.1). 

Lagrangian displacement 5 and Eulerian velocity potential cY# are related by 
A fluid element located at r ( t )  has been displaced to the position r(t) + E(t). 

E-(E.V)v = OS$. (3.2) 
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For flute instabilities which depend only on the radial and azimuthal space 
co-ordinates, r and 0, it will be sufficient to consider the radial displacement 
[ ( r ,  8, t) = E,. e,. With the velocity v = 3e, given by (2.3), equation (3.2) leads to 

(3.3) 

With (2.2), one easily finds the Bernouilli equation for the perturbations 

(3.4) 
SP 
P 

The isobaric surfaces are of interest for boundary conditions and can be derived 
from (3.4). Let r* = [r + [*(r ,  8, t ) ]  e, define the perturbed isobaric surface, which 
experiences the same pressure P(r*, t )  = P(r, t )  as the unperturbed isobaric 
surface of radius r .  At a point r, 

SP = P(r) -P(r) = P(r* - [*e,) - P(r*) = - [*e,. BP, 

(84)' +- = 0. 

which gives, with (2.4) and (3.4), 
g* = -(8$)*. (3.5) 

On the boundaries rl(t) and rz(t), which are both fluid and isobaric surfaces, 
(3.5) holds with [* = 6. Equations (3.3) and (3.5), written for the two boundaries, 
together with equation (3. l), determine the surface perturbations f,(8, t ) ,  
cz(8, t ) ,  and the velocity potential 8#(r, 8, t ) .  The displacements [ and the isobaric 
perturbed surfaces should be subsequently obtained with (3.3) and (3.5). 

A combination of (3.3) and (3.5) gives on the boundaries 

which will be used instead of (3.5). The natural area variable 7 = [ r  appears 
in both equations (3.3) and (3.6). 

3.2. Harmonic analysis 
The perturbations are Fourier-analyzed in the azimuthal angle 8. The interface 
radial perturbations Ei = Ei(t)expip8 or T,(t) = &(t)r,(t) preserve the areas 
(i = 1,2;  p = 1,2 ,3 ,  ...) and consequently the magnetic pressure Pl. Equations 
(3.3) and (3.6) are written at the two boundaries, using the order p harmonic 
solution of (3.1), 8$ = [a@) r p + P ( t )  r - p ]  expip8. They give a linear homogeneous 
first-order differential system with the variables rl(t), q2(t) ,  a(t)  and /3(t). 
Eliminating a and /3 from this system after lengthy algebraic manipulations one 
gets the following system for the boundary perturbations : 

where 

and 

I L-1= 72-71, c z  = 7z+r1 
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The coefficient J is geometrical, depending only on the aspect ratio G- = r2/r1 
and on the harmonic number p ,  while the coefficients b and G (non-independent 
according to (2.7)) are dynamical and directly related to the accelerations. 

Several equivalent systems have been derived, but system (3.7) is the only one 
which contains interpretable physical quantities while remaining formally 
relatively simple. However, the following alternative form will also be used : 

I (3.8) 

u, + I [ p b I -  ( I - l ) . . ]  u, +pcu, = 0, 

u, +pcul + I-l[pbI-I - I ]  ug = 0, 

with 

The coefficients of system (3.8) are complicated and are not written explicitly. 
As the coefficients b and c of system (3.7), they are linear functions of P1/yl 

and ?,/r,. 

4. Some stability criteria 
Instability is generally understood as an exponential growth of a perturbation. 

Such is the case when one considers the stability of a fluid or a plasma around an 
equilibrium or a stationary state. Results are then obtained by a linear normal 
mode analysis, i.e. taking g - exp (k. r f w t )  and examining the sign of Re ( w ) .  
It is also possible to deduce stability criteria from an energy principle (as did 
Bernstein et ak. 1958 and others). The time t is not limited in the linear 
approximation. 

The problem of motion stability is quite different (e.g. Liapounoff 1949; 
Cotsaftis 1964). Essentially, the motion introduces time-dependent coefficients 
in the equations of the perturbations, and a normal mode analysis as well as an 
energy principle formulation is not available any more. Alternatives other than 
an exponential or sinusoidal behaviour of the perturbations are possible. For 
example, it should be difficult to consider as stable a perturbation which increases 
in a monotonic non-exponential way. Moreover, the time t of interest, during 
which one wants to study the perturbation behaviour, is obviously limited. 
The definition of stability during a finite time, as well as the definition of the 
perturbation itself, are relative. For instance, during a converging motion, the 
perturbation g1 of the inner liner boundary could decrease and then be con- 
sidered as stable, while the reduced quantity El/rl, which characterizes the sym- 
metry departure and which is another measure of the perturbation, could 
increase and be called unstable. 

Owing to all these difficulties it is not surprising that even the linear systems 
(3.7)-(3.8) cannot be treated in a completely satisfactory way. Let us limit 
ourselves to enumerating some general properties of these systems, considering 
an infinite or sufficiently long time; applications will follow in $55 and 6. 
Analytical solutions exist for only a few cases of interest. When the growth time 
ofthe perturbations is small compared with the characteristic time of the motion, 
a BKW solution will be useful. 
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4.1. Properties of a single equation 
Farther on, equations of the form 

ij-nf(t)y = 0, f ( t )  = I:I - > O (n=integer) 

s" 1 (4.2) Y = +xPJ(n)/ J(f)dt+czexp-J(n) .J(f)dt , 

(4.1) 

will be found. For n 9 1, or for slowly varying coefficients, they admit the 
BKW solution 

t 

f' 
which is asymptotically exponentially unstable when n > 0 and stable when 
n < 0 (f(m) $. 0). More generally, stability properties depend on the sign of n for 
a large class of functions f .  When n > 0 it is always possible to build an unstable 
monotonic solution of (4.1) which grows without limit. When n < 0, the solutions 
remain bounded and thus stable i f f  tends monotonically towards a limit 
f(m) + 0; however, if f(m) = 0 they can be unstable. As an example, taking 
f = ~ k / F 4 ,  which corresponds to the simple A.F.C. hyperbolic motion law (2.13), 
one gets in terms of F ( f )  the solution 

.i. Frn w = -arccos~+arccost, (F;  < 1). I4 r where 

For $ N t -+ co, f +- 0 and y N r + co, whatever n. Nevertheless, the instability 
is only important for n > 1, especially n % I, and will be ignored for n < 1. 

4.2. Properties of system (3.7) 

It is easy to find the BKW solution of system (3.7), valid for p $ 1 or for slowly 
varying coefficients : 

Jc 4 F(t) = -__ = -- J42 +' ; G(t) = -(J2 + p)-+. 
q2+bJ C JF2 (4.4) 

The second equation (4.4) gives 

J$+(J2+I )bq2+J(b2-c2 )  = 0, 

which determines q(t). A BKW stability criterion on c, based on the sign of q(t) ,  
will then be 

s unstable (configurations 1 and 3), 
b < O  or 
b > 0, b2-C2 < 0 

(4.5) (b  > 0, b2-  c2 > 0)  zz stable (configuration 2) .  

Obviously this criterion is also obtained when the coefficients are supposed to be 
constant, in which case (4.4) is the exact solution of system (3.7). 
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When the BKW approximation does not hold, it becomes difficult to get 
simple results. Nevertheless if b < 0 it is possible to find monotone growing solu- 
tions for system (3.7). Hence 

b < 0 + unstable. 

which is consistent with (4.5). More complete results should involve the deriva- 
tives of the coefficients J( t ) ,  b(t) ,  c(t) .  It can also be proved that system (3.8), 
written in the matrix form U+&u = 0,  is unstable ( ( ~ ( 2  growing) when A% is 
a negative definite matrix (see Hartman 1964). 

(4.6) 

5. Special perturbations study 
Before discussing the stability problem it is worth while to consider special 

cases for which equivalent systems (3.7) or (3.8) split into two independent 
equationsof type (4.1) and are then greatly simplified. Such a simplification occurs 
for the fist-order harmonic p = 1 and this trivial case of mere boundary transla- 
tions will not be analyzed; an obvious equation gives the uniform motion of the 
centre of gravity. It happens also when the coefficient J = (cr* - 1)/(@ + 1) is 
close to its limiting values 0 and 1. This corresponds to wavelengths A, of the 
inner boundary perturbation, which are small ( J  N 1) or large ( J  N 0 )  compared 
with the liner thickness d. In  fact, the wavelength-to-thickness ratio 

A,/d = 27r/p(a- 1) 

is equivalent to ~ ( l  - J ) / J  for thin liners (a- 1 < I), whereas it is necessarily 
small for thick liners (a 1 or J N 1). 

5.1. Long wavelength perturbations ( A ,  9 d )  
The liner has to be thin, which allows one to define the small parameter 

d/r ,  = E < I, 

and to write the long wavelength condition as pe  M 2J < 1. An expansion of 
system (3.8) in powers of pe gives at first order (b M O(e), c = P/r+O(e)) the 
decoupled equations 

r 
(u,+ u2)" + ( p  - 1); (u, + u2) = 0, 

r 
(u1 -u2)" - (p+l ) ; (u1 -u2)  = 0, 

According to the conclusions of $4.1,  at least one of these equations will have 
an unstable solution, whatever the sign of r. As can be seen by considering the 
two modes u2 = u1 = d x  6, the mean displacement 6 = $(61+62) is always 
unstable, while the thickness variation Ad = E2 - 6, is asymptotically related to  
6 by Adld M & 27rlJA. Agreement with the BKW criterion, which should result 



7 80 J .  P. Sornon 

in stability for a configuration 2, is thus not complete. However, for a configura- 
tion 2 and a thin liner the accelerations are so small that the BKW analysis, as 
well as the present approximation, are no longer valid. Configuration 2 is slowly 
or marginally unstable (P N 0). 

When the thickness d tends to zero the Rayleigh-Taylor instability is better 
analyzed in terms of radial and azimuthal displacements &.(t) exp (ipe) and 
LJt) exp ( ip0) .  Equations for displacements are directly derived and turn out to 
be equations (5.1), taking & = u2/sp6 and cg = iu,/sp&.t Hence, I&,] is the limit 
of the quantity rl&- [,\/pd, when d -+ 0. The stability problem is completely 
solved for A.F.C. by infinitely thin liners. The motion law is (2.13) and equations 
(5.1) have solutions of type (4.3). 

Such solutions still give an approximation for A.F.C. by thin liners. They are 
straightforward but rather cumbersome and will not be written. Using reduced 
initial perturbations & ( O )  = &(O)/r,(O) and gi(0) = &(0)/i i(O) one finds that the 
geometrical ratio ( / r  is amplified up to the value 

1 exp ( 4 ~ ~ 6 )  
N - { ( l -Fmpi)  [g2(0)- ~l(0)]+&(0)-~2(0)>---,-- - (5.2) 

4Drm Pz 
at the maximum compression and tends towards a maximum 

(t/r)max N ( t / r ) m  exp (~TP') 
when t - f + co (first-order approximation in E and D). 

5.2. Xhort wavelength perturbations 
From the short wavelength condition one gets the expansion parameter 

l - J z 2 ~ - V < l .  

The liner may be thick as well as thin, but for thin liners one has necessarily 
p 3 1. A development of system (3.8) gives at  zero order in r p  the decoupled 
equations 

7.2 rl 
r2 rl 

The perturbation yi  = ri !& is then unstable ($4.1)  on a boundary towards which 
the acceleration is directed (PI > 0 or F, < 0, configuration 1 or 3), and the first- 
order approximation shows also that the perturbation yi on the other boundary 
is of the order of u-pvi. Such an instability cannot develop on both boundaries: 
the case P, > 0, P2 < 0 has been excluded in 9 2.1. For a configuration 2 (e.g. free 
liners or equal pressures on the boundaries), P, < 0, P, > 0 and the perturbations 
yi oscillate; according to the results of $4.1  they are stable. 

It will be noticed that equations (5.3) have the same form as equations (5.1) 
for long wavelengths, but the variables are the yi = ri& instead of the displace- 
ments &. Short and large wavelength perturbations have thus very different 

t Harris (1962) studied the Rayleigh-Taylor instability of infinitely thin cylindrical 
shells but forgot the term e$ 4 d$ dz in his equation (3.8) and consequently derived 
different equations. 

(5.3) i j 2 + p - y 2  = 0; ij,-p- yl = 0. 
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behaviours. As shown by the solutions of (5.1) and (5.3) taken for Y1 = 0, a geo- 
metrical effect tends to amplify the short wavelength perturbations more than 
the long ones in a converging motion, while the opposite is true for a diverging 
motion. However, in the presence of accelerations the two kinds of perturbations 
have different growth times (roughly proportional to p-3) and this effect is not 
generally apparent. 

In  the A.F.C. case the rough motion law (5.13) gives again an analytical solution 
of type (4.6). The perturbation amplitude has the approximate value, at 
maximum compression, 

and tends asymptotically towards a limit li&ax M I&exp (87rpJ) in the 
diverging motion phase. It is not strictly unstable (only 7 is unstable) but reaches 
extremely large values. The geometrical ratio I&/r1l has a sharp maximum near 
the turn-around radius and tends asymptotically towards zero. 

5.3. Discussion 
The general results obtained in 9 4.2 for the asymptotic stability of system (3.7) 
are summarized in figure 2, where the three possible configurations, distinguished 
in § 2 for the unperturbed motion, have been reported. For b > 0 only a BKW 
criterion exists but the study of special perturbations has just shown that BKW 
unstable codgurations 1 or 3 remain unstable even in cases for which BKW 
criterion does not necessarily apply. Some doubt remains about the only region 
of possible stability, configuration 2, which could be slightly unstable for long 
wavelengths. However, configuration 2 is relative to small pressure differ- 
ences (Pl-P2) < iJpv2,, and to small accelerations, and is not important in 
practice. 

The instability of the perturbations is consequently a general rule for radial 
cylindrical motions. In  A.F.C. the motion is initially a configuration 2 or 1 with 
small accelerations and then starts to be oscillating or slightly unstable. At 
maximum compression the coefficient b has a large negative value (table 1) and 
the motion belongs to the always unstable configuration 1. For our purpose it is 
essential to evaluate the development of given initial perturbations. The results 
of this section will suffice for only extreme cases. For most experimental cases 
the simplified motion law (2.13) is inappropriate and the perturbations generally 
do not remain in a region of long or short wavelengths during the whole compres- 
sion. Thus formulas (5.2) and (5.4) have a limited validity range and a numerical 
resolution of system (3.7) is necessary. 

6. Instability of axial field compressions 
System (3.7) has been solved numerically using the A.F.C. motion law (2.11) 

and considering four independent sets of initial reduced perturbations deter- 
mined by the quantities ( & ( O ) ,  '&(O), E2(0), g2(0)). The harmonicp varies between 
1 and 100. A basic case A has been chosen (Fm = 0.1, D = 4 x or N = 4 x 10-4; 
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table l), which corresponds to various experimental devices (for example to 

r,(O) = 5cm, r,(O) = 5.2cm, +,(O) = -2x  105cm/s, 

B(0) = 6 x 104G, B, = 6 x lo6(?; 

copper liner). Special attention has been paid to the significant geometrical 
quantity g(Z) = El/?,, which is a measure of the asymmetry. 

The behaviour of the spatial inner boundary mode (1, 0, 0,O) is considered 
first. Results relative to a small and a large p are given by figure 4.t For p = 2 the 
agreement with the theory developed in § 5.1 on long wavelength perturbations 
is qualitatively good, and (5.2) gives a reasonable estimate of Ig],; nevertheless 
the perturbation wavelength A, becomes smaller than the thickness at maximum 
compression, and the theoretical value for Iglmax is very rough. For p = 100 the 
outer boundary perturbation remains negligible and lgl has a maximum, as would 
be expected from the small wavelength perturbation theory of section (5.2). How- 
ever, the value (5.4) of ]gJ,is overestimated by three orders of magnitude, andit 
may be concluded either that the initial wavelength is not small enough or that, 
for fast-growing perturbations, the motion law (2.13) is too rough to justify the 
first-order theory. 
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- 400 
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FIGERE 4. Boundary instability for A.F.G., case A (Tm = 0.1, D = 4 x 
initial pertubation mode (1, 0, 0, 0) a.nd harmonics p = 2 and 100. 

Results are clearer in figure 5,  which gives the dependence of the geometrical 
ratio lgI on the harmonic number p .  Three values of [g(F,,p)[ are plotted for 
every p and are relative to the radius rl = 1 . 4 3 ~ ~  (in the compression phase), to 
the turn-around radius rm and to the maximum value Iglmax. Such a maximum 
value always exists, reached in the decompression phase for a variable radius 
rl 5 2rm and will thus measure the over-all instability effects. Figure 5 implies 
the following: 

(i) Whatever p ,  the instability does not develop during the main part of the 
motion (curve for rl = 1.43r,). Accelerations then being small, oscillating and 
slowly unstable modes are mixed. A resonance between a minimum of the 

t More results can be found in Somon (1968a). 
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perturbation and the beginning of the acceleration peak explains the holes which 
appear on the curves (g(p)  changes sign at  the resonance). 

(ii) At the maximum compression the instability starts to be important and 
increases with the harmonic number. Owing to the acceleration peak it becomes 
extremely high just after the maximum compression. 

(iii) Figure 5 illustrates the behaviour of the other modes. Low-order har- 
monics ( p  5 10) develop in a closely similar way for all modes and curves can be 
almost superimposed. High-order harmonics relative to  the outer boundary 
modes ( O , O ,  1,O) or (0, 0, 0 , l )  grow much less than those relative to the inner 
boundary modes (1, 0,O ,0) or (0, 1, 0,O). 

b 
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rl = r, 

1 
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rl= 1.43 r,,, 
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mode (0, 0, 0, 1) 

0 20 40 60 80 100 

r1 = 1.43 rm 
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P 
FIGURE 5. The geometrical ratio 191 = \ E , ~ / T ~  of the inner boundary displacement over 
radius as a function of the harmonic number p .  The curves are relative to radius 
rl = 1 . 4 3 ~ ~  (converging phase), turn-around radius rl = r, and to the maximum value 
Jgl,, of Igl, reached at  the begi-ing of the. decompression phase. Four independent 
initial perturbation modes ( f l ( 0 ) ,  11(0), f a ( 0 ) ,  12(0))  are considered. The non-perturbed 
motion is case A of axial field compression (Fm = 0.1, D = 4 x 

Other cases B, C ,  D ,  E have been calculated in order to estimate the effect the 
reduced thickness D and turn-around radius Fm have on the instability. Figure 6 
and table 1 give some results. Comparison of the cases B, A ,  C with the same turn- 
around radius Fm = 0.1 shows that, when the thickness is smaller, the instability 
is greater. This effect is more noticeable for high-order harmonics and initial per- 
turbations located on the outer boundary. The influence of the compression 
magnitude is seen from the cases D, A ,  E relative to the same thickness D = 0.04. 
When the turn-around radius decreases, low-order harmonics become more 
unstable (according to (5.2)) and, conversely, high-order harmonics less unstable. 
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A B C D E  
D 0.04 0.1 0.01 0.04 0.04 

0.1 0.1 0.1 0.25 0.05 

- 
50 100 10 50 100 - 10 

FIGURE 6. The maximum Igl,,,.. of the geometrical ratio lE1/~ll of the inner boundary 
displacement oyer radius as a function of the harmonic number p .  Four initial perturbation 
modes (11(0), 11(0), 12(0) z2(0)) and five A.F.C. non-perturbed motions are considered. 
Curves are based on a few points and have only an indicative character. 

Conclusion : conditions for  liner destrwction 

The calculations presented allow one, through Fourier analysis and mode de- 
composition, to evaluate at any time the liner symmetry departure l[ll/rl 
relative to every given initial perturbation. Conversely, it is possible to determine 
the initial perturbations which become dangerous during the compression. In- 
stability will be tolerable as long as l&l/rl remains smaller than unity, i.e. the 
compression is not destroyed by a perturbation reaching the axis. For each of 
the preceding modes, this condition for non-destruction at time t can be written 
as 

Note that the perturbation-to-wavelength ratio becomes \&I /A ,  = &PIIT when 
the liner is destroyed or I&l/rl = 1. Linear approximation is expected to be still 
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roughly valid if this ratio is smaller than unity. Condition (6.1) will then hold 
only for low-order harmonics ( p  5 lo), which correspond to the most important 
liner gross deformation. For high-order harmonics non-linear effects lead to the 
formation of jets or droplets long before the destruction limit is reached. The large 
p linear perturbations have thus no great physical meaning, and the magnetic 
field diffusion, which could vaporize jets and drops, adds to their complexity. 
Let us now discuss the case A ,  taking rl (0)  = 5cm, d(0)  = 2mm and initially 
given inner boundary ripples or type (1,0,0,0) perturbations. 

As demonstrated, the motion does not exhibit large instabilities in the con- 
verging phase, for radii rl somewhat greater than the turn-around radius r,. 
Even for the radius rl = 1.43rm, at  which the magnetic field reaches about half 
its maximum value, Ig(p) I has a mean value of 20 and the symmetry is still very 
good if I&(O)l $ 2.5mm, a condition which is obviously achieved in normal 
implosions. This is in agreement with experimental results. 

Close to the maximum compression, instability starts to grow rapidly and, at  
the turn-around radius, condition (6.1) for non-destruction becomes 

for the respective harmonics p = 2,10,100. The initial perturbations are not 
well known and they should be related in some way to the symmetry character- 
istics of each experimental liner-explosive device. Nevertheless, even discarding 
harmonic 100, the smallness of the figures relative to harmonics 2 and 10 is such 
that the condition for non-destruction will be difficult to satisfy. The existence 
of the turn-around radius or maximum compression is then doubtful but possible. 
Available experimental data confirm such a conclusion. 

At the very beginning of the decompression phase the asymmetry reaches its 
maximum Iglmax, which gives the condition of non-destruction during the whole 
motion Itl(0)I 5 0.16, 0-02, 5 x lO-'mm, again for p = 2,10,100. This condition 
is much more stringent than the turn-around one as soon as the harmonic order 
increases. The liner will consequently be quite certainly destroyed by motion in- 
stability just after the maximum compression should it occur. Indeed, the de- 
compression phase has never really been observed in experiments. 

These conclusions do not depend much on the considered mode. On the other 
hand, the liner characteristics do not enter strongly, as shown by table 1, where 
cases G and D must be considered extreme and somewhat unrealistic. However, 
due to the critical increase of Ig(t)l near maximum compression, each experi- 
mental case must be examined carefully. 

7. Large-amplitude instability of a compressible liner (A.F.c.) 

Let us now come back briefly to the two fundamental hypotheses of small- 
amplitude perturbations (linearization) and liner incompressibility which are 
the basis of the preceding A.F.C. instability calculations. As the amplitude of a 
harmonic perturbation grows, non-linear effects couple gradually higher har- 
monics and the perturbation-shape changes. Narrowing spikes and broadening 
bubbles appear and develop respectively faster and slower than the perturbation 

50 Fluid Mech. 38 
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predicted by the linear theory. Following Harlow & Welch (1966), non-linear 
effects appear when / A  becomes, greater than 0.4, in the plane case. Conclusions 
of 9 6, where the linearity limit l~ll/Al 5 1 was chosen arbitrarily, could then be 
altered for large-amplitude perturbations. On the other hand, metallic liners are 
slightly compressible (pa < p < 2 . 5 ~ ~ )  at megabar magnetic pressures. Somon 
(1965) proved that the incompressibility assumption (motion law 2.11) is valid 
when the reduced liner thickness D is somewhat smaller than a critical thickness 
D, = N*(1*5+ 1/M)) ( M  = I+l(0)l/c(O),c(O) = initial sound velocity). For most 
compressions the unperturbed motion is only slightly influenced by the com- 
pressibility (D - D,, B, - some megagauss). However, for large compressions 
( D  > D,, higher B,) a shock wave is created within the liner and the corn- 
pressibility influence is not negligible any more; maximum field and accelerations 
are smaller, but last longer than they would if the liner were incompressible. 

In  order to take these effects into account, a numerical technique has been 
used to solve the full non-linear, fluid equations (dependent on time and two 
space co-ordinates) for a compressible non-viscous fluid. The numerical method, 
called M.I.G. (‘MBthode des Integrales GBnBralisBes ’), works well for low- 
harmonic perturbations, but consumes a prohibitive computer time as soon as 
p > 10 (Guerri & Stella). The equation of state for the liner is the same as that 
in a previous paper (Somon 1965). Magnetic flux conservation still gives the 
inner boundary condition. The following results are relative to the initial har- 
monic perturbation of the inner boundary 

with 
F,(o) = r,(o) +purr2(o) -rl(0)l cospe, F A O )  = rz(o),  (7.1) 

G(r, 0) = u(r, 0) = u,(O) r2(0)/r, P(r,  0) = 0. 

They will be compared with the predictions of the preceding linear incompressible 
theory, corresponding to the reduced mode (pD, pD,  0,O). 

Numerical results 
J +  would be desirable to study a quasi-incompressible case, with D < D,, in 
order to dissociate variations due to non-linearity and compressibility. A more 
realistic case, corresponding to an experimental device, has been preferred. 
Determined by 

r,(O) = 4-8em, r,(O) = 5cm, v,(O) = 2 x  lO5cm/s, B(0) = 6 . 5 ~  104G (7.2) 

and a copper liner, it  does not appreciably differ from the basic case A of 9 6. The 
initial thickness is D = 1*08D, and the compressibility influence is thus small but 
not completely negligible. In  fact the unperturbed maximum compression values 
B, = 5.06 MG, rm = 0.54 cm are slightly different from the incompressible values 
B, = 6.15MG, rm = 0-49cm given by (2.12). Instability behaviour is shownin 
figures 7-10 and can be followed for increasing initial perturbation or p. 

(i) For small p (p = 0.02, p = 2; figure 7 )  the perturbation follows the linear 
incompressible theory predictions until the end of the compression phase. Spikes 
and bubbles appear afterwards. A spike grows less than linearly (smaller accelera- 
tions due to compressibility) before exceeding the linear behaviour (higher 
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harmonics coupling). The bubble amplitude always remains smaller than the 
spike and linear amplitudes. Successively, bubbles are repelled (rl = 0.58 em; 
t = 20*38ps),  the field reaches a maximum (5*07MG,t = 2 0 - 5 8 p ) ,  and spikes 
are repelled (rl = 0.50cm, t = 2 0 . 7 8 , ~ ) .  In  this slightly perturbed compression 
the magnetic field B( t )  never differs more than 0-2 yo from the unperturbed field. 

0 1 2 3 4 5  
Scale cm 

70\ 60 

20 

10 

0 5 10 15 20 25 
I 

8 ,  

r.cm t 

0- 
0 5 10 15 20 25 

I 

t7n 

t ( P S I  

FIGURE 7. Behaviour of Rayleigh-Taylor instability given by the numerical resolution 
of the full fluid equations for axial field compression (7.2) and initial perturbation (?.I), 
harmonic p = 2 with p = 2 x The dashed curve for the inner boundary perturbation 
is relative to the corresponding linear incompressible reduced mode (pD, pD, 0 , O ) .  

(ii) When the initial perturbation increases, spikes come closer to the axis, 
which they reach for a value p = p*. The liner is then destroyed after the maxi- 
mum compression. One h d s  p* % 0-06 for p = 2 and ,u* % 0.03 for p = 6. 
Using Iglmax, comparable conditions for the destruction of the linear incom- 
pressible theory should give the higher values ,u* = 0.16 and 0.05. Obviously 

50-2 
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the spikes have a greater amplitude than the linear perturbation when they reach 
the axis. Figures 8 and 9 illustrate the development of destructive instabilities. 

(iii) A further increase of the initial perturbation leads to a value ,u = ,u** 
above which spikes reach the axis and destroy the liner before a maximum field 
has been reached. Nevertheless bubbles have already been repelled by the field 
pressure. For p = 2 and 6 one obtains p*" M 0.2 and 0.15, which do not greatly 
differ from the linear incompressible theory values 0.22 and 0.17 calculated with 

Indeed, spikes had no time to develop inuch more than linear perturbations 
for these early liner destructions. 
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FIGURE 8. Analogue of figure 7, with p = 2 and p = 0.1. 
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(iv) The perturbed magnetic field behaviour shown in figure 10 is particularly 
interesting. The instability effect is found to diminish the maximum field ampli- 
tude and to narrow or even eliminate the magnetic peak. It could explain the 
dispersion of magnetic signals obtained by probe measurements. 
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FIGURE 9. Analogue of figure 7, with p = 6 and p = 0.1. 

It may be concluded that the linear-incompressible theory predicts well the 
initial perturbations for which the instability destroys the Iiner before the maxi- 
mum field has been reached (values relative to lql, or ,a**). Less accurate are 
the conditions for destruction in the decompression phase. Values of lglmax are 
underestimated in the linear theory but they could be used with a safety co- 
efficient of about 3. Such a conclusion should be generally valid for D 5 0, and 
low-order harmonics. 

Great confidence in the linear incompressible theory cannot be expected when 
compressibility plays a more important role. For example, let us modify initial 
condition (7.2) by taking v,(O) = 8 x 105cm/sJ B(0) = 1.5 x 105GJ which gives 
DID, = 2.34. One obtains a maximum field B, = 20.9MG and a turn-around 
radius r,  = 0.41 em, which greatly differ from the incompressible values 
B, = 40MG and rm = 0-29 em. Perturbations of type (7.1) have again been 
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FIGURE 10. Effect of instability on magnetic field amplification as given by the numerical 
resolution of the full fluid equations for A.F.C. (7.2) and several initial perturbations of 
typo (7.1). The points indicated on the magnetic field versus time curves allow one to 
follow thc development of the spikes. Points indicating the spike distance to the axis 
( rm = 0.543 cm):  0, 0.4 cm; +, 0.3 cm; 0, 0.2 cm; A ,  0.1 em; v, 0.0 cm. 

considered for p = 2 and p = 6. Numerical results show that the linear incom- 
pressible theory remains valid until the maximum compression vicinity, i.e. 
obviously as long as the magnetic pressure is not too high, but may lead after- 
wards to erroneous perturbation behaviour. For instance, when p = 6, the 
linear incompressible perturbation changes sign close to the maximum com- 
pression; as explained in 6, this is due to the occurrence of oscillating modes, 
and resonance holes should appear for p < 6 on the Ig(p)l curves, analogous to 
those of figure 5 .  Such a phenomenon is not observed if the compressibility is 
taken into account. The perturbation always grows, and holes seem not to occur. 
Calculation gives the critical ,u* M 0.04 and 0-015, p** = 0-15 and 0.15, for 
p = 2 and 6 respectively. Critical p are then comparable to those of the very 
different case (7.2). As has already been noticed for the linear incompressible 
theory, the conditions for liner destruction do not seem to depend very much 
on the considered case. 

The author is grateful to Dr J. G. Linhart for having encouraged this work, 
and thanks Dr G. Di Cola for fruitful discussions and for the numerical treatment 
involved in $ 6 .  The M.I.G. method mentioned in $ 7  was developed by the 
S.E.M.A. Society in Paris. The author also thanks Drs L. Guerri and P. Stella- 
Fasoli, who improved this method and obtained the numerical results of § 7. 
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